tengah

Kamis, 29 November 2012

frais

PENGERTIAN DASAR MILLING

A. Pengertian Dasar Mesin Milling ( Frais ) 1. Definisi milling ( frais )
Proses cutting conventional dengan menggunakan mesin milling, dihasilkan suatu permukaan yang rata atau bentuk –bentuk lain yang spesifik ( profil, radius, silindris, dan lain – lain ) dengan ukuran dan kualitas tertentu dan menyisakan chip.
2. Prinsip dasar kerja milling
Proses pemotongan benda kerja yang diam dengan meja yang bergerak menuju alat potong yang berputar.
3. Tujuan
Menghasilan benda kerja dengan permukaan yang rata atau bentuk – bentuk lain yang spesifik ( profil, radius, silindris, dan lain – lain ) dengan ukuran dan kualitas tertentu.
Contoh – contoh pengerjaan milling :
IMG_8175
IMG_8172
B. Gerakan – Gerakan Pada Mesin Milling ( Frais )
Ada 3 ( Tiga ) gerakan yang terdapat pada milling ( frais ) yaitu :
1. Gerakan utama
Gerakan berputarnya alat potong pada spindle utama. Satuan yang digunakan adalah rpm ( rotasi per menit ) dan simbolnya n.
2. Gerakan pemakanan ( Feeding )
Gerakan benda kerja pada waktu proses pemotongan. Satuan yang digunakan adalahmm / menit dan simbolnya s.
3. Gerakan setting ( Depth of Cut )
Gerakan mendekatkan benda kerja pada alat potong. Satuan yang digunakan adalah mmdan simbolnya a / t.
C. Prinsip Pemotongan Pada Mesin Milling ( Frais )
1. Pemotongan Face Cutting
Pemotongan benda kerja dengan menggunakan sisi potong bagian depan ( Face ) dari alat potong ( Cutter ).
2. Pemotongan Side Cutting
Pemotongan dengan menggunakan sisi potong bagian samping ( Side ) dari alat potong ( Cutter ). Pemotongan ini juga dibedakan menjadi :
300px-Climb_Milling_01 a. Pemotongan climbing
Pemotongan benda kerja dengan arah putaran alat potong ( Cutter ) searah dengan arah gerakan pemakanan benda kerja ( Feeding ).
.
.
.
275px-Conventional_Milling_01 b. Pemotongan conventional
Pemotongan benda kerja dengan arah putaran alat potong ( Cutter ) berlawanan arah dengan arah geraka pemakanan benda kerja ( Feeding ).

Rabu, 31 Oktober 2012

AUTO CAD

Pengertian Autocad

AutoCAD merupakan sebuah program yang biasa digunakan untuk tujuan tertentu dalam menggambar serta merancang dengan bantuan komputer dalam pembentukan model serta ukuran dua dan tiga dimensi atau lebih dikenali sebagai “Computer-aided drafting and design program” (CAD). Program ini dapat digunakan dalam semua bidang kerja terutama sekali dalam bidang-bidang yang memerlukan keterampilan khusus seperti bidang Mekanikal Engineering, Sipil, Arsitektur, Desain Grafik, dan semua bidang yang berkaitan dengan penggunaan CAD.



Sistem program gambar dapat membantu komputer ini akan memberikan kemudahan dalam penghasilan model yang tepat untuk memenuhi keperluan khusus di samping segala informasi di dalam ukuran yang bisa digunakan dalam bentuk laporan, Penilaian Bahan (BOM), fungsi sederhana dan bentuk numerial dan sebagainya. Dengan bantuan sistem ini dapat menghasilkan sesuatu kerja pada tahap keahlian dan yang tinggi ketepatan di samping menghemat waktu dengan hanya perlu memberi beberapa petunjuk serta cara yang mudah.



Gambar yang dibentuk melalui program autocad dapt diubah bentuk-nya untuk keperluan grafik yang lain melalui beberapa format seperti DXF ( Data Exchanged File), IGES, dan SLD. Tambahan pula membantu program ini juga, berkemampuan untuk membentuk dan menganalisa model pepejal dalam kerja-kerja rekabentuk kejuruteraan. Untuk memenuhi keperluan yang lebih canggih, perisian ini mampu membawa pengguna mengautomasikan kerja-kerja penggunaan pengaturcaraan sokongan seperti LISP, dan ADS untuk membentuk arahan tambahan tersendiri.

PDPL

KRISTAL LOGAM DAN STRUKTUR FERRO
1. Kristal Logam
Kristal logam ialah kumpulan dari atom-atom logam yang membentuk suatu susunan yang teratur.

Kristal logam terdiri dari beberapa macam bentuk tetapi dalam hal ini akan dibahas khusus kristal logam ferro.

Atom besi tersusun di dalam sebuah kristal yang berbentuk kubus ruang, yang artinya sebuah bentuk garis ruang yang titik potongnya diduduki atom-atom besi

Kristal logam terdiri dari :
     1.      Kubus pusat ruang ( Body Centered Cubic) = BCC = dalam
     2.      Kubus pusat bidang ( Face Centered Cubic) = FCC = muka
     3.      Kubus pusat tetragonal ( Body Centered Tetragonal) = BCT = hexagonal


A. KUBUS PUSAT RUANG (DALAM)
            Kristal logam atau ferro kubus pusat ruang adalah susunan atom-atom besi pada suhu dibawah 723oC, rusuk-rusuknya sama panjang a=b=c atom-atom berada pada setiap sudut kubus serta satu atom berada pada ruang sudut, jumlah atomnya 9.

B. KUBUS PUSAT RUANG (MUKA)
            Kubus pusat bidang adalah kubus pusat ruang yang berubah pada suhu 723oC dimana atom-atomnya bergerak akibat pemanasan yang membentuk kristal baru, dimana atom-atom berada pada setiap sudut kubus dan juga setiap pusat bidang, jumlah atomnya 14.

C KUBUS PUSAT TETRAGONA (HEXAGONAL)
            Kubus pusat tetragonal adalah kubus pusat bidang yang berubah akibat pendinginan yang cepat. Rusuk-rusuknya tidak sama panjang a=c≠b. Atom-atom pada setiap sudut kubus, jumlahatomnya 14.



2. Struktur ferro
            Struktur logam ferro ialah susunan-susunan yang terdapat di dalam logam tersebut (bagun dalam dari suatu macam zat).

Struktur-struktur logam ferro adalah :

A.  STRUKTUR FERRIT
            Ferrit berasal dari bahasa latin yang artinya besi(Fe). Struktur ini disebut besi murni. Struktur ini dapat berubah sifat apabila dipanaskan. Perubahan terrsebut adalah :

a.Besi murni / besi alpha (α)
Struktur besi murni dibawah suhu 723oC, sifatnya magnetis dan lunak. Susunan kristalnya berbentuk kubus pusat ruang.

b. Besi beta (β)
Struktur ferrit pada suhu 768o-910oC mulai berubah sifat dari magnetis mennjadi non magnetis yang disebut besi beta, susunan kristalnya mulai berubah dari kubus pusat ruang menjadi kubus pusat bidang.

c. Besi gamma (γ)
Struktur ferrit pada suhu 910oC-1391oC berubah menjadi struktur besi gamma yang mempunyai sifat tidak magnetis, susunan kristalnya berbentuk kubus pusat bidang.

d. Besi delta (δ)
Struktur ferrit yang sudah menjadi Austenit pada suhu 1392oC sampai mencair suhu 1539oC berubah menjadi besi delta, susunan kristalnya sama dengan besi dalam bentuk kubus pusat ruan tetapi jarak atomnya lebih besar


B. STRUKTUR PERLIT
            Struktur ini adalah struktur yang terbentuk dari persenyawaan antara FERRIT dan struktur SEMENTITT yang seimbang. Semua struktur ferrit saling mengikat dengan struktur sementitt dalam lapisan tipis yang menunjukkan jalur hitam (Fe3C) dan terang (Fe) dengan warna yang mengkilap seperti induk mutiara. Jika suatu logam ferro mengandung kadar Karbon 0,8% maka struktur logam tersebut terdiri dari 100% perlit. Struktur ini jika dianaskan sampai suhu 723oC akan berubah struktur austenit.

C. STRUKTUR SEMENTIT
            Struktur ini adalah suatu senyawa kimia  antara besi (Fe) dengan zat arang (C). Struktur ini degan rumus kkimia Fe3C artinya 3 atom besi mengikat sebuah atom karbon menjadi sebuah molekul. Struktur ini sangat kersas, bila zat arang pada suatu logam tidak bersenyawa dengan besi disebut zat bebas(grafit) 6,67%C.

D. STRUKTUR AUSTENIT
            Struktur Austenit berasal dari strutur ferrit yang dipanaskan pada suhu 910o-1391oC atau struktur perlit yang dipanaskan pada suhu 723oC -1391oC. Struktur ini disebut besi gamma, sifatnya tidak magnetis, kristalnya berbentuk kubus pusat bidang, lunak dan dapat ditempa.

E. STRUKTUR MARTENSIT
            Struktur ini berasal dari struktur austenit yang didinginkan secara cepat. Jika struktur austenit didinginkan lambat cenderung akan kembali ke struktur ferrit, perlit, sementit. Struktur ini sifatnya sangat keras, kristalnya berbentuk kubus pusat tetragonal tetapii rusuknya panjang.

F. STRUKTUR BAINIT (PERLIT HALUS)
            Struktur bainit adalah perubahan dari struktur austenit yang pendinginannya lambat, tetapi sifatnya lebih keras dari perlit dan lebih lunak dari martensit

Selasa, 30 Oktober 2012

CNC

.
Pusat pemutaran CNC.
Panel CNC Siemens
Numerical Control / NC (berarti "kontrol numerik") merupakan sistem otomatisasi Mesin perkakas yang dioperasikan oleh perintah yang diprogram secara abstarkdan disimpan dimedia penyimpanan, hal ini berlawanan dengan kebiasaan sebelumnya dimana mesin perkakas biasanya dikontrol dengan putaran tangan atau otomatisasi sederhana menggunakan cam. Kata NC sendiri adalah singkatan dalam Bahasa inggris dari kata Numerical Control yang artinya Kontrol Numerik. Mesin NC pertama diciptakan pertama kali pada tahun 40-an dan 50-an, dengan memodifikasi Mesin perkakas biasa. Dalam hal ini Mesin perkakas biasa ditambahkan dengan motor yang akan menggerakan pengontrol mengikuti titik-titik yang dimasukan kedalam sistem oleh perekam kertas. Mesin perpaduan antara servo motor dan mekanis ini segera digantikan dengan sistem analog dan kemudian komputerdigital, menciptakan Mesin perkakas modern yang disebut Mesin CNC (computer numerical control) yang dikemudian hari telah merevolusi proses desain. Saat ini mesin CNC mempunyai hubungan yang sangat erat dengan program CAD. Mesin-mesin CNC dibangun untuk menjawab tantangan di dunia manufaktur modern. Dengan mesin CNC, ketelitian suatu produk dapat dijamin hingga 1/100 mm lebih, pengerjaan produk masal dengan hasil yang sama persis dan waktu permesinan yang cepat.
NC/CNC terdiri dari tiga bagian utama :

  1. Progam
  2. Control Unit/Processor
  3. Motor listrik servo untuk menggerakan kontrol pahat
  4. Motor listrik untuk menggerakan/memutar pahat
  5. Pahat
  6. Dudukan dan pemegang

LAS LISTRIK

Posisi pengelasan di bagi menjadi 6 yaitu di antaranya sebagai berikut
 
Posisi Di Bawah Tangan 
Kemiringan elektroda 10 derajat – 20 derajat terhadap garis vertical kearah jalan elektroda dan 70 derajat-80 derajat terhadap benda kerja.

Posisi Tegak (vertical) 
Mengelas posisi tegak adalah apabila dilakukan arah pengelasannya keatas atau ke bawah. Dengan kemiringan elektroda sekitar 10 derajat-15 derajat terhadapvertikal dan 70 derajat-85 derajat terhadap benda kerja.

Posisi Datar (horizontal) 
Mengelas dengan horizontal biasa disebut juga mengelas merata dimana kedudukan benda kerja dibuat tegak dan arah elektroda mengikuti horizontal. Sewaktu mengelas elektroda dibuat miring sekitar 5 derajat – 10 derajat terhadap garis vertical dan 70 derajat – 80 derajat kearah benda kerja.


Posisi Di Atas Kepala (Overhead) 
Mengelas dengan posisi ini benda kerja terletak pada bagian atas juru las dan kedudukan elektroda sekitar 5 derajat – 20 derajat terhadap garis vertical dan 75 derajat-85 derajat terhadap benda kerja.

Posisi Datar (1G) 
Pada posisi ini sebaiknya menggunakan metode weaving yaitu zigzag dan setengah bulan Untuk jenis sambungan ini dapat dilakukan penetrasi pada kedua sisi, tetapi dapat juga dilakukan penetrasi pada satu sisi saja. Type posisi datar (1G) didalam pelaksanaannya sangat mudah. Dapat diapplikasikan pada material pipa dengan jalan pipa diputar.

Posisi Horizontal (2G) 
Pengelasan pipa 2G adalah pengelasan posisi horizontal, yaitu pipa pada posisi tegak dan pengelasan dilakukan secara horizontal mengelilingi pipa. posisi sudut electrode pengelasan pipa 2G yaitu 90º Panjang gerakan elektrode antara 1-2 kali diameter elektrode. Bila terlalu panjang dapat mengakibatkan kurang baiknya mutu las. Panjang busur diusahakan sependek mungkin yaitu ½ kali diameter elektrode las. Untuk pengelasan pengisian dilakukan dengan gerakan melingkar dan diusahakan dapat membakar dengan baik pada kedua sisi kampuh agar tidak terjadi cacat. Gerakan seperti ini diulangi untuk pengisian berikutnya.

Posisi vertikal (3G) 
Pengelasan posisi 3G dilakukan pada material plate. Posisi 3G ini dilaksanakan pada plate dan elektrode vertikal.

Posisi Horizontal Pipa (5G)
Pada pengelasan posisi 5G dibagi menjadi 2, yaitu :
-Pengelasan naik
Biasanya dilakukan pada pipa yang mempunyai dinding teal karena membutuhkan panas yang tinggi. Pengelasan arah naik kecepatannya lebih rendah dibandingkan pengelasan dengan arah turun, sehingga panas masukan tiap satuan luas lebih tinggi dibanding dengan pengelasan turun.Posisi pengelasan 5G pipa diletakkan pada posisi horizontal tetap dan pengelasan dilakukan mengelilingi pipa tersebut. Supaya hasil pengelasan baik, maka diperlukan las kancing (tack weld) pada posisi jam 5-8-11 dan 2. Mulai pengelasan pada jam 5.30 ke jam 12.00 melalui jam 6 dan kemudian dilanjutkan dengan posisi jam 5.30 ke jam 12.00 melalui jam 3. Gerakan elektrode untuk posisi root pass (las akar) adalah berbentuk segitiga teratur dengan jarak busur ½ kali diameter elektrode.

GERINDA

Identitas dan Karakteristik Roda Gerinda
 identitas dan spesifikasi sangat berpengaruh dalam memilih roda gerinda. Kedua hal ini digunakan untuk menentukan dan menyesuaikan dengan karakteristik benda yang akan digerinda.
1. Identitas
          Identitas memuat jenis bahan asah, ukuran butiran bahan asah, tingkat kekerasan susunan butiran bahan asah, jenis bahan perekat.
Contoh : A 24 S BF
Artinya :  A  adalah jenis bahan asah yaitu oksida aluminium
              24  adalah ukuran butiran bahan asah yaitu kasar
               S   adalah jenis perekat yaitu silikat
              BF  adalah kode yang dikeluarkan oleh pabrik

2. Spesifikasi
          Spesifikasi memuat ukuran dan bentuk roda gerinda
Contoh : 100 x 6 x 16,0
Artinya : 100  adalah diameter luar roda gerinda
                     6    adalah ketebalan roda gerinda
                   16,0 adalah diameter dalam roda gerinda


Keterangan lain untuk membantu memilih roda gerinda:

- Jenis Bahan Asah
A - Aluminium Oxide (oksida aluminium)
B – Silicone Carbide ( Karbida silisium)
C – Diamon (intan)

Ukuran Butiran Bahan Asah 
Kasar : 12 14 16 20 24
Sedang : 30 36 45 56 60
Halus : 70 80 90 100 120
Sangat halus : 150 180 220 240
Tepung : 280 320 400 500 800 1200
Ukuran butiran yaitu banyaknya butiran tiap inchi.

- Tingkat Kekerasan
Sangat lunak : D E F G
Lunak : H I J K
Sedang : L M N O
Keras : P Q R S
Sangat keras : T U V W

- Susunan Butiran Bahan Asah
Rapat : 0, 1, 2, 3
Sedang : 4, 5, 6
Renggang : 7, 8, 9, 10, 11, 12
Yang dimaksud susunan butiran bahan asah pada suatu roda gerinda yaitu jarak antara butiran – butiran bahan asah yang terdapat pada roda gerinda.

- Jenis Bahan Perekat
V = Vitrified (tembikar)
S = Silicate (silikat)
R = Rubber (karet)
E = Shellac (embalau)

TEKNIK BUBUT


Bubut merupakan suatu proses pemakanan benda kerja yang sayatannya dilakukan dengan cara memutar benda kerja kemudian dikenakan pada pahat yang digerakkan secara translasi sejajar dengan sumbu putar dari benda kerja. Gerakan putar dari benda kerja disebut gerak potong relatif dan gerakkan translasi dari pahat disebut gerak umpan.
Dengan mengatur perbandingan kecepatan rotasi benda kerja dan kecepatan translasi pahat maka akan diperoleh berbagai macam ulir dengan ukuran kisar yang berbeda. Hal ini dapat dilakukan dengan jalan menukar roda gigi translasi yang menghubungkan poros spindel dengan poros ulir.
Roda gigi penukar disediakan secara khusus untuk memenuhi keperluan pembuatan ulir. Jumlah gigi pada masing-masing roda gigi penukar bervariasi besarnya mulai dari jumlah 15 sampai dengan jumlah gigi maksimum 127. Roda gigi penukar dengan jumlah 127 mempunyai kekhususan karena digunakan untuk konversi dari ulir metrik ke ulir inci.
Prinsip kerja mesin bubut
Mesin bubut yang menggunakan sabuk di Hagley Museum
Poros spindel akan memutar benda kerja melalui piringan pembawa sehingga memutar roda gigi pada poros spindel. Melalui roda gigi penghubung, putaran akan disampaikan ke roda gigi poros ulir. Oleh klem berulir, putaran poros ulir tersebut diubah menjadi gerak translasi pada eretan yang membawa pahat. Akibatnya pada benda kerja akan terjadi sayatan yang berbentuk ulir.
Bagian-bagian mesin bubut
Bubut merupakan suatu proses pemakanan benda kerja yang sayatannya dilakukan dengan cara memutar benda kerja kemudian dikenakan pada pahat yang digerakkan secara translasi sejajar dengan sumbu putar dari benda kerja. Gerakan putar dari benda kerja disebut gerak potong relatif dan gerakkan translasi dari pahat disebut gerak umpan.
Dengan mengatur perbandingan kecepatan rotasi benda kerja dan kecepatan translasi pahat maka akan diperoleh berbagai macam ulir dengan ukuran kisar yang berbeda. Hal ini dapat dilakukan dengan jalan menukar roda gigi translasi yang menghubungkan poros spindel dengan poros ulir.
Roda gigi penukar disediakan secara khusus untuk memenuhi keperluan pembuatan ulir. Jumlah gigi pada masing-masing roda gigi penukar bervariasi besarnya mulai dari jumlah 15 sampai dengan jumlah gigi maksimum 127. Roda gigi penukar dengan jumlah 127 mempunyai kekhususan karena digunakan untuk konversi dari ulir metrik ke ulir inci.